Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 15, 2027
-
Abstract Spinodoid architected materials have drawn significant attention due to their unique nature in stochasticity, aperiodicity, and bi-continuity. Compared to classic periodic truss-, beam-, and plate-based lattice architectures, spinodoids are insensitive to manufacturing defects, scalable for high-throughput production, functionally graded by tunable local properties, and material failure resistant due to low-curvature morphology. However, the design of spinodoids is often hindered by the curse of dimensionality with an extremely large design space of spinodoid types, material density, orientation, continuity, and anisotropy. From a design optimization perspective, while genetic algorithms are often beyond the reach of computing capacity, gradient-based topology optimization is challenged by the intricate mathematical derivation of gradient fields with respect to various spinodoid parameters. To address such challenges, we propose a data-driven multiscale topology optimization framework. Our framework reformulates the design variables of spinodoid materials as the parameters of neural networks, enabling automated computation of topological gradients. Additionally, it incorporates a Gaussian Process surrogate for spinodoid constitutive models, eliminating the need for repeated computational homogenization and enhancing the scalability of multiscale topology optimization. Compared to ‘black-box’ deep learning approaches, the proposed framework provides clear physical insights into material distribution. It explicitly reveals why anisotropic spinodoids with tailored orientations are favored in certain regions, while isotropic spinodoids are more suitable elsewhere. This interpretability helps to bridge the gap between data-driven design with mechanistic understanding. To this end, we test our design framework on several numerical experiments. We find our multiscale spinodoid designs with controllable anisotropy achieve better performance than single-scale isotropic counterparts, with clear physics interpretations.more » « lessFree, publicly-accessible full text available January 1, 2027
-
Free, publicly-accessible full text available February 1, 2027
-
Abstract In scientific machine learning (SciML), a key challenge is learning unknown, evolving physical processes and making predictions across spatio-temporal scales. For example, in real-world manufacturing problems like additive manufacturing, users adjust known machine settings while unknown environmental parameters simultaneously fluctuate. To make reliable predictions, it is desired for a model to not only capture long-range spatio-temporal interactions from data but also adapt to new and unknown environments; traditional machine learning models excel at the first task but often lack physical interpretability and struggle to generalize under varying environmental conditions. To tackle these challenges, we propose the attention-based spatio-temporal neural operator (ASNO), a novel architecture that combines separable attention mechanisms for spatial and temporal interactions and adapts to unseen physical parameters. Inspired by the backward differentiation formula, ASNO learns a transformer for temporal prediction and extrapolation and an attention-based neural operator for handling varying external loads, enhancing interpretability by isolating historical state contributions and external forces, enabling the discovery of underlying physical laws and generalizability to unseen physical environments. Empirical results on SciML benchmarks demonstrate that ASNO outperforms existing models, establishing its potential for engineering applications, physics discovery, and interpretable machine learning.more » « lessFree, publicly-accessible full text available November 6, 2026
-
Free, publicly-accessible full text available February 1, 2027
-
Abstract Predictive maintenance in truck fleet management is essential to reduce downtime and maintenance costs, yet traditional approaches often rely on static, rule-based schedules that fail to capture real-time operational variability. In this paper, we propose a robust digital twin (DT) framework for predictive maintenance specifically designed for tire predictive maintenance that integrates real-time tire health data, dynamic decision-making, and adaptive model updates to optimize tire resource allocation and enhance system health. Our framework is unique in its ability to incorporate uncertainty-aware dynamic programming, drift detection, and adaptive surrogate model updates within the digital twin. Specifically, we develop an uncertainty-aware dynamic linear programming (U-DLP) approach to optimize tire placement and servicing schedules based on continuously updated tire health data through surrogate model. To ensure DT reliability, we employ the maximum concept discrepancy (MCD) method to detect drift by identifying discrepancies between predicted and actual tire performance, thereby flagging data for necessary tire health model updates. Subsequently, we introduce an uncertainty-aware low-rank adaptation (U-LORA) method to efficiently update the tire health model by dynamically refining the surrogate model based on measured uncertainty. Simulation results indicate that our framework extends tire lifespan by nearly 50% compared to conventional methods, requiring fewer tires to achieve the same operational mileage, while also reducing tire waste and maintenance costs. This integrated digital twin framework offers a reliable and efficient solution for tire predictive maintenance, enhancing fleet sustainability and operational efficiency.more » « lessFree, publicly-accessible full text available August 17, 2026
-
Free, publicly-accessible full text available December 1, 2026
-
Responsive materials offer solutions to complex engineering challenges by enabling systems to adapt their shapes or properties in response to external stimuli. To fully harness the potential of responsive materials, inverse design methods that integrate multiple types of stimuli and manufacturing processes are necessary. We present a unified, autonomous codesign framework that simultaneously optimizes structure, manufacturing, materials, and stimuli for responsive material systems, achieving target shape morphing under multiple stimuli without relying on human heuristics or expertise. It integrates generalized topology optimization with hybrid data-physics differentiable simulations to achieve flexible, manufacturing-aware designs for network-like responsive material systems. We showcase our framework with a multimaterial three-dimensional printing process with high material tunability, which we use to fabricate liquid crystal elastomer systems that morph into different forms in response to heat and light. The exceptional flexibility and efficiency of our method will advance shape-morphing applications spanning soft robotics to drug delivery.more » « lessFree, publicly-accessible full text available September 12, 2026
-
Determining an individual’s strategic reasoning capability based solely on choice data is a complex task. This complexity arises because sophisticated players might have non-equilibrium beliefs about others, leading to non-equilibrium actions. In our study, we pair human participants with computer players known to be fully rational. This use of robot players allows us to disentangle limited reasoning capacity from belief formation and social biases. Our results show that, when paired with robots, subjects consistently demonstrate higher levels of rationality, compared to when paired with human players. Furthermore, players’ rationality levels are relatively stable across games when paired with robot players, even though those with intermediate rationality levels exhibit inconsistency across games. Leveraging our experimental design, we identify and document potential causes of this inconsistency.more » « lessFree, publicly-accessible full text available May 7, 2026
-
Free, publicly-accessible full text available July 10, 2026
An official website of the United States government
